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Effect of degree correlation on edge controllability of real networks∗
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We use the controllability limit theory to study impact of correlation between in- and out-degrees (degree correlation)
on edge controllability of real networks. Simulation results and analytic calculations show that the degree correlation
plays an important role in the edge controllability of real networks, especially dense real networks. The upper and lower
controllability limits hold for all kinds of real networks. Any edge controllability in between the limits is achievable by
properly adjusting the degree correlation. In addition, we find that the edge dynamics in some real networks with positive
degree correlation may be difficult to control, and explain the rationality of this anomaly based on the controllability limit
theory.
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1. Introduction
Complex network has been extensively studied due to its

widespread use in social, biological, technological and finan-
cial systems. How to control complex networks is a challeng-
ing issue[1,2] in modern network science. According to control
theory,[3,4] the dynamics in a complex network is controllable
if, with a suitable choice of inputs, it can be driven from any
initial state to any desired final state within finite time. Liu
et al.[5] developed structural control theory for the nodal dy-
namics of complex networks and offered efficient tool based
on the maximum matching to characterize the controllabil-
ity of networks. A lot of work has been carried out based
on the nodal dynamics and has achieved fruitful results.[6–11]

However, the edge dynamics, which is suitable for modeling
networks where nodes are active components with informa-
tion processing capabilities, is also very important in network
science. Nepusz et al.[12] introduced the edge dynamics and
studied its structural controllability. Many interests have been
stimulated toward exploring edge controllability properties of
complex networks.[13–23]

A correlation between in- and out-degrees is ubiquitous
in real networks.[24–26] It is reasonable to assume that such
a degree correlation has influence on the edge controllability
of real networks. Despite recent advances in the edge con-
trollability, research on impact of degree correlation on the
edge controllability of real networks is still missing. In this
paper, we focus on this issue. Using the minimum numbers
of driver nodes and driven edges to measure the edge control-
lability, we find that the degree correlation plays an important
role in the edge controllability of real networks. Specifically,
a stronger degree correlation has a greater impact on the edge
controllability. The edge controllability of dense real networks
is more susceptible to the degree distribution. Then we use the

controllability limit theory[22] to quantify the effect of degree
correlation on the edge controllability of real networks. This
enables us to realize that the upper and lower controllability
limits hold for all kinds of real networks. A vast range exists
between the upper and lower controllability limits. Arbitrary
edge controllability in between the limits can be achieved by
properly adjusting the degree correlation. In addition, we find
that the edge dynamics in some real networks with positive
degree correlation may be difficult to control. This anomaly
runs counter to the conclusion in Ref. [12]. We explain the
rationality of this anomaly based on the controllability limit
theory.

2. Edge controllability
The edge dynamics in a digraph G(V,E) can be described

by the switchboard dynamics.[12] The state vectors of the in-
coming and outgoing edges of a node v are denoted as 𝑦−v and
𝑦+

v , respectively. Factors affecting the state vector 𝑦+
v include

the state vector 𝑦−v , the damping terms τv and external inputs
uv. Thus the equations for the edge dynamics can be expressed
as

𝑦̇+
v = Sv𝑦

−
v − τv⊗𝑦+

v +σvuv, (1)

where Sv ∈ Rk+v ×k−v is the switching matrix. Its row number
is equal to the out-degree k+v , and its column number is equal
to the in-degree k−v . Here ⊗ denotes Hadamard product; σv

will be 1 if node v is a driver node and, otherwise, it will be
0. In the structural edge controllability,[12] Sv must be a struc-
tural matrix, in which all nonzero elements are independent
free parameters.

Let 𝑥 = [x1,x2, . . . ,xM] being the state vectors of all
edges. Equation (1) can be written as a linear time-invariant
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system:

𝑥̇= (W −T )𝑥+H𝑢, (2)

where W ∈RM×M is the state matrix, in which wi j is nonzero if
and only if the head of edge j is the tail of edge i. The damp-
ing matrix T ∈ RM×M is a diagonal matrix whose diagonal
elements are the damping terms corresponding to each edge.
The input matrix H ∈RM×M will a diagonal matrix, whose ith
diagonal element is σv, if node v is the tail of edge i.

The switchboard dynamics is relevant to some real sys-
tems with complex network topological features. It is suitable
for modeling network systems where nodes are active compo-
nents with information processing capabilities. For example,
in the Internet with computers and routers, the edges repre-
sent physical connections such as ethernet cables, optical fiber
cables and wireless connections. A node (e.g., a router) con-
stantly processes the information received from its upstream
neighbors and makes decisions which nodes to contact in the
downstream neighbors. The information received and passed
by a node can then be represented by the state variables on its
incoming and outgoing edges. Their dynamical evolutions are
governed by the switching matrix in each node. The state vari-
ables, together with the switching matrices, define the edge
dynamics.

The switchboard dynamics describes the edge dynamic
and gives rise to several conclusions of the structural control-
lability of edge dynamics that differ from nodal dynamics. The
key conclusion is that the minimum set of driver node and
driven edges required to control the edge dynamics are de-
termined by the local information of nodes. Specifically, the
minimum set of driver nodes is determined by selecting the
divergent nodes (k+v > k−v ) and one arbitrary node from each
balanced component (k+v = k−v for all nodes in a connected
component). Here k+v − k−v of outgoing edges of a driver node

denotes the driven edges. One of the outgoing edges of the se-
lected driver node in each balanced component is the driven
edge. The criterion for discerning driver nodes and driven
edges is a major difference in the structural controllability be-
tween the edge dynamics and the node dynamics, and gives
rise to several controllability properties of the edge dynam-
ics that differ markedly from those associated with the nodal
dynamics. One of the main conclusions is that a positive cor-
relation between the in- and out-degrees can enhance the edge
controllability.[12]

3. Effect of degree correlation on the edge con-
trollability of real networks
We analyze the effect of the correlation between in- and

out-degrees on the edge controllability of real networks. The
edge controllability is measured by the minimum number ND

of driver nodes and the minimum number MD of driven edges
required to maintain full control.[12] The Pearson correlation
coefficient[27] can be used to quantify the correlation between
in- and out-degrees of a network. Specifically, for a net-
work with in-degree sequence Kin = {k−1 ,k

−
2 , . . . ,k

−
N} and out-

degree sequence Kout = {k+1 ,k
+
2 , . . . ,k

+
N}, its Pearson correla-

tion coefficient is

P =
∑

N
i=1(k

−
i − k−)(k+i − k+)√

∑
N
i=1(k

−
i − k−)2

√
∑

N
i=1(k

+
i − k+)2

, (3)

where k− = (1/N)∑
N
i=1 k−i and k+ = (1/N)∑

N
i=1 k+i . P = 1 in-

dicates total positive linear correlation between Kin and Kout,
P = 0 means no correlation, and P = −1 the total negative
linear correlation. We refer to correlation between in- and out-
degrees as degree correlation in the rest of this paper for sim-
plicity.
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Fig. 1. Effect of degree correlation on the edge controllability of real networks. (a) The fraction of driver nodes nreal
D obtained directly and nrand

D
of real networks with no degree correlation. (b) The fraction of driven edges mreal

D obtained directly and mrand
D of real networks with no degree

correlation. (c) and (d) The differences ∆n = nrand
D −nreal

D and ∆m = mrand
D −mreal

D as the function of the Pearson correlation coefficient P of real
networks. All the numerical results are obtained by averaging over 50 independent networks realizations. See Table 1 for details.
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In order to study the effect of the degree correlation on the
edge controllability, we apply a randomization, which keeps
in-degree sequence Kin and out-degree sequence Kout of a real
network unchanged but selects randomly the combination of
in-degree k−i and out-degree k+j for each node, i.e., P≈ 0. The
minimum number of driver nodes and driven edges required to
maintain full control of the edge dynamics in the randomiza-
tion are defined as Nrand

D and Mrand
D , respectively. We compare

the nrand
D = Nrand

D /N (mrand
D = Mrand

D /M) and nreal
D (mreal

D ) ob-
tained directly from the real networks. As shown in Figs. 1(a)
and 1(b), there is a significant deviation in the edge control-
lability of real networks and their randomization, especially
mreal

D and mrand
D . This shows that the degree correlation plays

an important role in the edge controllability of real networks.
To further investigate the impact of the degree correla-

tion on the edge controllability, we show the differences ∆n =

nrand
D − nreal

D and ∆m = mrand
D −mreal

D versus the Pearson corre-
lation coefficient P of real networks. As shown in Figs. 1(c)
and 1(d), a basic trend is that ∆n and ∆m increase with the in-
creasing P. This shows that a stronger degree correlation has
a greater impact on the edge controllability. Meanwhile, this
further illustrates the huge impact of the degree correlation on

the edge controllability of real networks.

4. Controllability limit theory
We use the controllability limit theory[22] to quantify the

effect of the degree correlation on the edge controllability of
real networks. The controllability limit is the limits of accept-
able change of ND and MD by adjusting the degree correla-
tion only. That is, the in-degree sequence Kin and out-degree
sequence Kout remain unchanged, and in-degree k−i and out-
degree k+j of each node are reconfigured to maximize (or min-
imize) ND and MD.

We first give the calculation method of the controllabil-
ity limit. In general, the balanced component is infrequent in
directed networks. It has little influence on ND and MD.[12]

Hence we neglect the possible presence of the balanced com-
ponent. Then the classification of driver node and driven
edge depends solely on the in- and out-degrees of each node.
Specifically, a divergent node (k+v > k−v ) must be a driver node,
and each driver node must control k+v − k−v of its outgoing
edges. This allows us to calculate the controllability limit
based on the maximum match and weighted maximum match.

in degree

out degree

node

edge

matched node

matched edge

driver node

driven edge

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Controllability limit theory. The method of calculating the controllability limits of a network with in-degree sequence Kin = {0,1,2,3}
and out-degree sequence Kout = {1,1,2,2}. (a) In the bipartite graph H, the node i from in-degree sequence and the node j from out-degree
sequence are connected if k−i < k+j . Its generated network in (e) has NU

D = 2. (b) In the bipartite graph H, the node i from in-degree sequence
and the node j from out-degree sequence will be connected if k−i ≥ k+j . Its generated network in (f) has NL

D = 1. (c) The weighted bipartite
graph H∗ has the same topological structure as H, and the weight of each edge is k+j − k−i . Its generated network in (g) has MU

D = 3. (d) The
weighted bipartite graph H∗ is generated by connecting arbitrary two nodes, and assigning the weight k−i −k+j to the edges satisfying k−i < k+j ,
and 0 for other edges. Its generated network in (h) has ML

D = 1. Note that the matching nodes of the generated networks are from the matched
edges in the maximum matching, and other nodes of the generated networks are combined randomly.

As shown in Fig. 2(a), a bipartite graph H is generated
by the in-degree sequence Kin = {0,1,2,3} and the out-degree
sequence Kout = {1,1,2,2}, where node i from in-degree se-
quence and node j from out-degree sequence are connected
if k−i < k+j . Each edge in H corresponds to a potential driver

node in the generated network. As shown in Fig. 2(e), its gen-
erated network has the upper limit of ND, which is

NU
D = max(1, |MH |), (4)

where |MH | is the number of matching edges in the maximum

100202-3



Chin. Phys. B Vol. 29, No. 10 (2020) 100202

matching of H. Similarly, each edge of H in Fig. 2(b) corre-
sponds to a potential non-driver node in the generated network.
As shown in Fig. 2(f), its generated network has the lower limit
of ND, which is

NL
D = max(1,N−|MH |), (5)

where |MH | is the number of matching edges in the maximum
matching of H.

As shown in Fig. 2(c), the weighted bipartite graph H∗

has the same topological structure as H, and the weight of each
edge is k+j − k−i . The weight in H∗ corresponds to the number
of potential driven edges in the generated network. As shown
in Fig. 2(g), its generated network has the upper limit of MD,
which is

MU
D = max(1, |MH∗ |), (6)

where |MH∗ | is the sum of edge weights in the weighted max-
imum matching of H∗. Differently, as shown in Fig. 2(d), the
weighted bipartite graph H∗ is generated by connecting arbi-
trary two nodes, and assigning the weight k−i −k+j to the edges
satisfying k−i < k+j , and 0 for other edges. The absolute value
of the weight |k−i − k+j | in H∗ corresponds to the number of
potential driven edges in the generated network. The weighted
maximum matching of H∗ will preferentially select edges with

weight 0 and smaller weight |k−i −k+j |. Thus its generated net-
work has the lower limit of MD, which is

ML
D = max(1, |MH∗ |), (7)

where |MH∗ | is the absolute values of the sum of edge weights
in the weighted maximum matching of H∗.

5. Controllability limit of real networks
We use the tools developed above to determine the con-

trollability limit of real networks. The upper and lower limits
of nD (mD) of different types of real networks are displayed
in Figs. 3(a) and 3(b). An important observation is that the
upper and lower limits of nD (mD) hold for all kinds of real
networks. Any values of nD (mD) in between the limits are
achievable by properly adjusting the degree correlation. This
demonstrates the significant effect of the degree correlation on
the edge controllability of real networks.

As shown in Figs. 3(c) and 3(d), another notable result is
that the differences nU

D−nL
D (mU

D−mL
D) increase as the average

degree 〈k〉 increases. This shows that degree correlation has a
bigger effect on nD (mD) in dense real networks, in which the
range between the upper and lower limits is larger. In other
words, the edge controllability of dense real networks is more
susceptible to the degree correlation.
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Fig. 3. Controllability limit of real networks. (a) The fraction of driver nodes nreal
D obtained directly and the controllability limit (nU

D and nL
D) of

real networks. (b) The fraction of driven edges mreal
D obtained directly and the controllability limit (mU

D and mL
D) of real networks. (c) and (d) The

differences nU
D−nL

D and mU
D−mL

D versus the average degree 〈k〉 of real networks. The numbers in (a) and (b) refer to the network indices in Table 1.
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6. Anomaly in edge controllability of real net-
works
One of the main conclusions in Ref. [12] is that the pos-

itive correlation between the in- and out-degrees can enhance
the edge controllability. That is, for a real network with posi-
tive degree correlation P > 0, its differences read ∆n > 0 and
∆m > 0. Figure 4 shows the Pearson correlation coefficient P,
the differences ∆n and ∆m of each real network. As show in
Fig. 4(a), we find an anomaly that the edge dynamics in some
real networks with positive degree correlation may be difficult
to be controlled. A typical example is that ∆n = −0.066 and
P = 0.379 in the Political blogs network (No. 20 in Table 1).
However, as shown in Fig. 4(b), a similar anomaly does not
appear from the point of mD.
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Fig. 4. Anomaly in edge controllability of real networks. (a) The Pear-
son correlation coefficient P and the differences ∆n of real networks.
(b) The Pearson correlation coefficient P and the differences ∆m of real
networks. All the numerical results are obtained by averaging over 50
independent networks in realizations. The numbers refer to the network
indices in Table 1.

The reason for the anomaly is that there are some nodes
in real networks whose out-degree is slightly larger than in-
degree. These nodes not only maintain a positive correlation
between the in- and out-degrees, but also generate a large num-
ber of driver nodes. For example, for a network generated
by Kin = Kout = {1,2, . . . ,100}, the case of all nodes with the
same in- and out-degrees causes the network to reach the lower
limit nL

D = 0.01. Its Pearson correlation coefficient is PL
ND = 1.

Conversely, the case of 99 nodes with k−v = k+v −1 causes the
network to reach the upper limit nU

D = 0.99. Its Pearson cor-
relation coefficient is PU

ND = 0.94. One can see that the posi-
tive degree correlation applies to both upper and lower limits.

This shows that the positive degree correlation may reduce the
edge controllability from the point of nD. However, a simi-
lar anomaly does not appear from the point of mD. Specif-
ically, in the above example, the case of all nodes with the
same in- and out-degrees leads to mL

D = 0.01 and PL
MD = 1;

conversely, the case of each node with in-degree k−v = i and
out-degree k+v = 101− i (i= 1,2, . . . ,100) leads to mU

D = 0.495
and PU

MD =−1.
We further study the anomaly based on the controllability

limit theory, and conduct the following simulations. Firstly,
we calculate the range of P of model networks and real net-
works. Specifically, the in-degree and out-degree sequences
of a network are sorted from small to large, and are denoted
as Kin = {k−1 ,k

−
2 , . . . ,k

−
N} and Kout = {k+1 ,k

+
2 , . . . ,k

+
N}, respec-

tively. When we assign individual node with in-degree k−i and
out-degree k+i (i = 1,2, . . . ,N), its generated network has the
strongest positive degree correlation and the largest p-value.
On the contrary, when we assign individual node with in-
degree k−i and out-degree k+N−i+1 (i = 1,2, . . . ,N), its gener-
ated network has the strongest negative degree correlation and
the smallest p-value. Note that P may not reach 1 or −1 for
some networks.

Secondly, for a generated network with the upper limit
NU

D , we calculate its Pearson correlation coefficient PU
ND. Note

that we use the maximum matching to determine NU
D . The in-

and out-degrees of the nodes, which correspond to the matched
edges in H, are fixed in the generated network. However, the
in- and out-degrees of the rest nodes are adjustable. This leads
to the fact that PU

ND is allowed to fluctuate in some extent,
which is PU

ND ∈ [P′,P′′]. We assign the minimum unmatched
in-degree to the maximum unmatched out-degree in turn, and
calculate P′. Then we assign the minimum unmatched in-
degree to the minimum unmatched out-degree in turn, and cal-
culate P′′. In a similar way, we calculate PU

MD, PL
ND and PL

MD of
model and real networks.

In Figs. 5(a)–5(d), we give the ranges of P, PU
ND, PL

ND, PU
MD

and PL
MD of model networks. As shown in Figs. 5(a) and 5(c),

the positive degree correlation (P≈ 0.5) applies to both nU
D and

nL
D in the model networks with large 〈k〉. This shows that the

positive degree correlation may reduce the edge controllability
from the point of nD. Conversely, as shown in Figs. 5(b) and
5(d), if we consider the edge controllability from the point of
mD, the positive degree correlation indeed enhances the edge
controllability. The same result also appeared on real net-
works. As shown in Fig. 5(e), except one of the food web
(No. 7 in Table 1) and the electronic circuits (Nos. 13, 14 and
15 in Table 1), the positive degree correlation applies to both
nU

D and nL
D in real networks. Conversely, as shown in Fig. 5(f),

the anomaly does not appear from the point of mD in real net-
works.
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MD (orange) in [(b), (d)] model networks and (f) real networks. The model network is generated by given degree distribution, where in-degree follows
exponent distribution and out-degree follows Poisson distribution in (a) and (b), and in-degree follows Poisson distribution and out-degree follows
exponent distribution in (c) and (d). See Appendix for how to construct a model network. All the numerical results are obtained by averaging over 50
independent networks in realizations. The numbers in (e)–(f) refer to the network indices in Table 1.

7. Conclusions

We have studied the effect of degree correlation on edge
controllability of real networks. Simulation results show that
a stronger degree correlation has a greater impact on the edge
controllability. Meanwhile, degree correlation plays a more
important role in edge controllability of dense networks. Then
we use the controllability limit theory to quantify the effect
of degree correlation on edge controllability. Evaluation of
real networks indicates that the upper and lower controllabil-

ity limits hold for all kinds of real networks. Any edge con-
trollability in between the limits are achievable by properly
adjusting the degree correlation. In addition, we find that the
edge dynamics in the networks with positive degree correla-
tion may be difficult to control, and explain this anomaly based
on the controllability limit theory. The results not only deepen
our understanding of edge controllability of real networks, but
also raise several new problems. Future research directions in-
clude the effect of the degree correlation on the controllable
subspace, target control and control energy of real networks.

Appendix A: Real networks
The details of the real networks we have studied are presented in Table 1.

Table 1. Simulation results of real networks. For each real network, we show its type, name, nodes’ number N, edges’ number M, the Pearson correlation
coefficient P, the fraction of driver nodes and driven edges calculated in the real network (nreal

D and mreal
D ), after randomization (nrand

D and mrand
D ), and the

controllability limits (nU
D, nL

D, mU
D and mL

D).

Type No. Name N M P nreal
D mreal

D nrand
D mrand

D nU
D nL

D mU
D mL

D

Regulatory 1 Ownership-USCorp[28] 8497 6726 −0.031 0.136 0.924 0.086 0.848 0.159 0.028 1.000 0.738
2 TRN-EC-2[29] 423 578 −0.082 0.220 0.829 0.166 0.762 0.274 0.071 0.879 0.545
3 TRN-Yeast-1[30] 4684 15451 0.044 0.052 0.947 0.049 0.947 0.064 0.025 0.984 0.803
4 TRN-Yeast-2[29] 688 1079 –0.236 0.177 0.952 0.138 0.841 0.190 0.063 0.968 0.610

Trust 5 Prison inmate[31] 67 182 0.201 0.403 0.319 0.450 0.359 0.761 0.179 0.511 0.110
6 Wiki Vote[32] 7115 103689 0.318 0.281 0.653 0.279 0.834 0.335 0.066 0.987 0.192

Food web 7 St.Marks[33] 45 224 −0.292 0.533 0.563 0.479 0.483 0.711 0.156 0.701 0.143
8 Seagrass[34] 49 226 −0.192 0.449 0.518 0.441 0.46 0.714 0.102 0.655 0.097
9 Grassland[35] 88 137 −0.179 0.318 0.606 0.302 0.559 0.341 0.148 0.620 0.314

10 Ythan[35] 135 601 0.168 0.304 0.597 0.333 0.637 0.474 0.052 0.844 0.195
11 Silwood[36] 154 370 0.014 0.188 0.797 0.174 0.806 0.214 0.084 0.897 0.508
12 Little Rock[37] 183 2494 −0.138 0.639 0.603 0.654 0.601 0.831 0.497 0.818 0.299

Electronic 13 S208a[29] 122 189 −0.177 0.451 0.344 0.430 0.326 0.549 0.311 0.413 0.201
circuits 14 s420a[29] 252 399 −0.154 0.456 0.348 0.439 0.327 0.560 0.325 0.416 0.206

15 s838a[29] 512 819 −0.146 0.459 0.350 0.441 0.327 0.564 0.332 0.418 0.208

100202-6



Chin. Phys. B Vol. 29, No. 10 (2020) 100202

Table 1. (Continued).

Type No. Name N M P nreal
D mreal

D nrand
D mrand

D nU
D nL

D mU
D mL

D

Neuronal 16 C. elegans[38] 297 2359 0.291 0.549 0.374 0.494 0.477 0.923 0.081 0.639 0.069

Citation 17 Small World[39] 233 1988 −0.094 0.210 0.729 0.206 0.735 0.309 0.047 0.869 0.469

18 SciMet[39] 2729 10416 0.068 0.360 0.623 0.352 0.638 0.613 0.037 0.830 0.153

19 Kohonen[40] 3772 12731 0.044 0.230 0.715 0.215 0.724 0.381 0.029 0.876 0.436

Internet 20 Political blogs[41] 1224 19090 0.379 0.619 0.525 0.553 0.710 0.870 0.165 0.908 0.162

21 p2p-1[42] 10876 39994 0.145 0.334 0.591 0.344 0.647 0.381 0.255 0.870 0.325

22 p2p-2[42] 8846 31839 0.101 0.344 0.628 0.344 0.659 0.387 0.265 0.878 0.352

23 p2p-3[42] 8717 31525 0.107 0.343 0.625 0.344 0.658 0.383 0.264 0.878 0.347

Organizational 24 Freeman-1[43] 34 695 0.642 0.353 0.111 0.454 0.199 0.735 0.118 0.285 0.047

25 Consulting[44] 46 879 0.482 0.522 0.150 0.497 0.266 0.848 0.109 0.369 0.078

Language 26 English words[31] 7381 46281 0.857 0.158 0.210 0.326 0.755 0.479 0.003 0.862 0.087

27 French words[31] 8325 24295 0.905 0.157 0.216 0.254 0.676 0.333 0.009 0.736 0.092

Transportation 28 USair97[45] 332 2126 0.608 0.437 0.400 0.440 0.689 0.762 0.030 0.861 0.045

Appendix B: Model networks
A model network with N nodes is structured by giving

in- and out-degree distributions, including Poisson distribution
and exponential distribution. According to a given degree dis-
tribution, a degree sequence can be obtained, where the in- and
out-degree sequences are denoted by Kin = {k−1 ,k

−
2 , . . . ,k

−
N}

and Kout = {k+1 ,k
+
2 , . . . ,k

+
N}, respectively. Note that N must be

large enough to ensure that the degree sequence is completely
encoded by the degree distribution. Meanwhile, we can finely
tune the degree sequence to ensure ∑i k−i = ∑i k+i , which will
not change the intrinsic degree distribution.

A directed network starts from N isolated nodes. Each
node is assigned in-degree k−i and out-degree k+j from in- and
out-degree sequences, respectively. Each time, two nodes v
with k−v > 0 and node u with k+u > 0 are randomly selected
and connected from u to v. Then the in-degree of the node v
turns into k−v − 1 and the out-degree of the node u turns into
k+u − 1. Repeat this process until all nodes meet the given in-
and out-degrees. Note that the multiple edges in the gener-
ated network will be processed by edge swapping, i.e., turning
edges euv and ekl to edges eul and ekv if there exist multiple
edges euv, where k 6= u and l 6= v.

We can build different networks by the in- and out-degree
sequences. For example, as shown in Fig. 2, the in- and out-
degrees sequences are Kin = {0,1,2,3} and Kout = {1,1,2,2},
respectively. As shown in Figs. 2(e)–2(h), by matching the
in- and out-degree sequences based on different strategies, dif-
ferent networks are generated by the same in- and out-degree
sequences.
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